A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp

نویسندگان

  • J. A. Beesley
  • C. S. Bretherton
  • C. Jakob
  • E. L Andreas
  • J. M. Intrieri
  • T. A. Uttal
چکیده

Cloud and boundary layer variables from the European Centre for MediumRange Weather Forecasts (ECMWF) forecast model were compared with measurements made from surface instruments and from upward looking 8 mm wavelength radar and lidar at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp during November and December of 1997. The precipitation accumulation, near-surface winds, and surface downward longwave irradiance predicted by the model were in good agreement with SHEBA observations during this period. However, surface downward longwave irradiance was underestimated by 10 W m on average when low clouds were present in the model and observations. The model demonstrated considerable skill in predicting the occurrence and vertical extent of cloudiness over SHEBA, with some tendency to overestimate the frequency of clouds below 1 km. A synthetic radar reflectivity estimated from the ECMWF model variables was compared with 8 mm wavelength radar measurements. The two were broadly consistent only if the assumed snowflake size distribution over SHEBA had a smaller proportion of large flakes than was found in previous studies at lower latitudes. The ECMWF model assumes a temperaturedependent partitioning of cloud condensate between water and ice. Lidar depolarization measurements at SHEBA indicate that both liquid and ice phase clouds occurred over a wide range of temperatures throughout the winter season, with liquid occurring at temperatures as low as 239 K. A much larger fraction of liquid water clouds was observed than the ECMWF model predicted. The largest discrepancies between the ECMWF model and the observations were in surface temperature (up to 15 K) and turbulent sensible heat fluxes (up to 60 W m). These appear to be due at least partially to the ECMWF sea ice model, which did not allow surface temperatures to respond nearly as rapidly to changing atmospheric conditions as was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

[1] In the polar oceans the ice thickness distribution controls the exchange of heat between the ocean and the atmosphere and determines the strength of the ice. The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment included a year-long field program centered on a drifting ice station in the Beaufort and Chukchi Seas in the Arctic Ocean from October 1997 through October 1998. Here we u...

متن کامل

Observation and Interpretation of Microwave Cloud Signatures over the Arctic Ocean during Winter

An analysis of satellite microwave brightness temperatures at 85 GHz (37 GHz) shows that these temperatures sometimes vary by more than 30 K (15 K) within 1 or 2 days at a single location over Arctic sea ice. This variation can be seen in horizontal brightness temperature distributions with spatial scales of hundreds of kilometers, as well as in brightness temperature time series observed at a ...

متن کامل

Tests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set

A GCM cloud microphysics parameterization is tested and improved using the CCCMA single-column model with cloud properties obtained at the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) during the period of November 1997 to September 1998. The ECMWF reanalysis water vapor profile is scaled with rawinsonde data so that the new relative humidity profiles are compatible with rawinsonde...

متن کامل

Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment

[1] Because clouds play such a significant role in climate, understanding their responses to climatic temperature changes is essential to determining the overall impact of a given climate forcing. Cloud liquid water path (LWP) over tropical and midlatitude oceans has been observed to decrease with increasing cloud temperature. The presence of an ice sheet over the Arctic Ocean alters the energy...

متن کامل

SINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT By

We evaluate the ability of a typical cloud parameterization from a global model (CCM3 from NCAR) to simulate the Arctic cloudiness and longwave radiative fluxes during wintertime. Simulations are conducted with a Single-Column Model (SCM) forced with observations and reanalysis data from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Typically, the SCM overestimates the Arctic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000